

An Engineers Guide To **Real-time Data Analytics**

Paul Andrew

Technical Architect

Cloud Formations

in

Paul Andrew

Co-Founde<mark>r & Director</mark>

Chief Technology Officer

- /mrpaulandrew
- @mrpaulandrew
- In/mrpaulandrew
- Mentor | Author
- Speaker | Podcast Host
- Event Organiser

Copilot

Add a slide about the advantages of combining real-time data with batch data in a lambda architecture.

I completed some of your request, but I'll need more practice before I can do everything in it. What else can I help you with?

By using a lambda architecture, we can take advantage of both real-time and batch data to ga Real-time data allows us to monitor system performance and detect issues as they arise, whi combining these two types of data in a lambda architecture, we can gain a 360-degree vie

An Engineers Guide To **Real-time Data Analytics**

Paul Andrew

Technical Architect

Cloud Formations

Agenda:

Theory | Concepts | Tooling

Demo

Conclusions

An Engineers Guide To Real-time Data Analytics

Cloud Formations

What is big data?

Answer: It depends!

Answer:

"Any data that you cannot process in the time that you have/want using the technology you have."

- Buck Woody @BuckWoodyMSFT

Volume Velocity Variety Veracity Value

What is the goal of our data solutions?

Data Insight

How do we deliver our data insights?

Data Insight

How do we deliver our data insights?

Data = Information = Knowledge = Power

Analyse

Model

Predict

Data Insight

Data Warehouse

Offline Analytical Transactional Processing

Data Warehouse

Data

Insight

Lake House (Data-Ware-Lake-Delta-Beach-House-Lakes)

Transfer & Training

Knowledge

Cloud Formations

A Timeline of Microsoft Data Technology

A Timeline of Microsoft Data Technology

My First Reference Architecture

Components of a Big Data Architecture

Components of a Big Data Architecture

An Engineers Guide To-Real-time Data Analytics

Cloud Formations

What do we mean by real-time data?

Answer (big data):

"Any data that you cannot process

in the time that you have/want

using the technology you have."

Database transaction commit.

Formations

Cloud **(**

Producers

The point the data is born.

Data ingestion and transformation.

Consumers

Decisions made.

Data insights displayed.

The point the data can be used.

What do we mean by real-time data?

Answer:

"Delivering data from the producer to consumer as fast as possible using the technology you have."

Cloud **(** Formations

Consumers

Decisions made.

Data insights displayed.

The point the data can be used.

What do we mean by <u>near real-time data?</u>

Answer:

"Delivering data from the producer to consumer within 1 minute of it being created (born)."

Cloud **(** Formations

Consumers

Decisions made.

Data insights displayed.

The point the data can be used.

What do we mean by a data stream?

Answer:

"Data that is constantly flowing from producer to consumer in near real-time."

Formations

Cloud **(**

Consumers

Decisions made.

Data insights displayed.

The point the data can be used.

Agenda:

Theory | Concepts | Tooling

Demo

Conclusions

Tooling

Cloud Formations

Components of a Big Data Architecture

Azure Tooling

Azure Tooling – Event Hub

Azure Tooling – IoT Hub

Azure Tooling – Cosmos DB

Azure Tooling – Databricks

Azure Tooling – Synapse Analytics

Azure Tooling – Data Explorer

Azure Tooling – Stream Analytics

Azure Tooling – Stream Analytics

Outputs

JSON

Query

Outputs

Query

Outputs

Sliding
Tumbling
Hopping

"A window contains event data along a timeline and enables you to perform various operations against the events within that window."

Carpats

Azure Stream Analytics – Sliding Window

Outputs

Azure Stream Analytics – Tumbling Window

SQL

Azure Stream Analytics – Tumbling Window

Azure Stream Analytics – Hopping Window

SQL

Azure Stream Analytics – Hopping Window

SQ

Tooling

Cloud Formations

What is Microsoft Fabric? – Vision and Stack Evolution

Microsoft Fabric is an end-to-end analytics solution with full-service capabilities including data movement, data lakes, data engineering, data integration, data science, real-time analytics, and business intelligence—all backed by a shared platform providing robust data

Your organization no longer needs to stitch together individual analytics services from multiple vendors. Instead, use a streamlined solution that's easy to connect, onboard, and

What is Microsoft Fabric?

Microsoft Fabric

What is Microsoft Fabric? - Experiences vs Technical Capabilities

- Workload management and orchestration with dependency chain handling and scheduling.

- Low code and full code development in **Python**, Scala, R, SQL executed using Spark clusters.

- Dashboards and metrics created to for the business to consume data, coded using DAX and M.

Fabric Tooling (Before MSBuild)

The Microsoft Fabric Real-Time Hub

Demo

Cloud Formations

Our Use Case

A bike shop front with large glass windows showing bike related products on the shelves inside. The shop front has a sign with the name Adventure Works.

Formations

Cloud **(**

A bike shop called Adventure Works, standing inside looking at the cashier which includes a modern point of sale till system. On the wall behind the cashier are bike related products. At the corporate head offices of Adventure Works standing in the main operations room. On the wall are large televisions showing a range of data analytics dashboards with charts and technical information.

Inside the office of the CEO at the company Adventure Works, on the desk is a business plan to role out more retail stores across the country based on targeted growth on an analytics dashboard visible on a large TV.

Azure Real-Time Data Handling

Fabric Real-Time Data Handling

Conclusions

Cloud Formations

Glossary

Term	Definition			
Big Data	Any data that you cannot process in the time that you have/want using the technology you have.			
Real-time Data	Delivering data from the producer to consumer as fast as possible using the technology you have.			
Near Real-time Data	Delivering data from the producer to consumer within 1 minute of it being created.			
Data Stream	Data that is constantly flowing from producer to consumer in near real-time.			

Cloud Cloud Formations

Lambda & Kappa Architectures vs Technology

Azure Tooling – My Favourites

<section-header>Analytical data store

All The Options

Cloud Cloud Formations

Case Study 1

Near real-time streaming of marketing outreach data into Power BI dashboards to provide up to the minute analytics on the performance of campaigns to inform future content and audience enrolment.

cloudformations.org/case-studies

Case Study 2

The greenfield implementation follows a microservices approach to data handling, leveraging Azure Functions Apps to ingest telemetry from the Starlink API at scale and metadata driven, feeding into a Microsoft Fabric Event Stream. Bootstrapped by Integration Pipelines, data feeds into Realtime Analytics Kusto Databases and Lakehouse structures for reporting using Power BI Dashboards.

cloudformations.org/case-studies

Common Data Problems

Cloud

Formations

Identifying Pathways to Value and Data Insights

	Challenge		Handling		Engaging
	Business/Data Silos				
	Monolith Solutions		Use Case Identification		
F	Reactive Data Outputs		Consistent Governance		
	High Platform Run Costs		Pragmatic Decentralisation		
	Lack of Data Trust		Platform Orchestration		Advisory
			Strategy Alignment		Lifecycle Support
	Limited Analytics		Modern Technology Stack		Strategy
	High Integration Effort		Onboarding Frameworks		Design
	Following Not Leading		Canonical Modelling		Delivery
	Disparate Systems		Cultural Support		Training
	Time to Insight Friction		Vision Sharing		indining
	Data Adoption Pain		Technical Consolidation		
	Technical Debt		Capability Mapping		**
	Unclear Dependencies		Maturity Assessment		
	Lack of Data Ownership				

Solving

Reduced Run Costs

New Revenue

Inspired Workforce

Competitive Edge

Informed Decisions

Advanced Skills

New Partnerships

Industry Leader

More Training Available

